48 research outputs found

    Validity of a four-factor modelunderlying the physical fitness in adults with intellectual disabilities a confirmatory factor analysis

    Get PDF
    Purpose: To use confirmatory factor analysis to test whether a four factor might explain the clustering of the components of the physical fitness in adults with intellectual disabilities (FID). Relevance: Individuals with intellectual disabilities (ID) are significantly weaker than individuals without ID at all stages of life. These subjects might be particularly susceptible to loss of basic function because of poor physical fitness. Participants: We studied 267 adults with intellectual disability of the Spanish Special Olympics Games. Methods: The four-factor model included: the flexibility, the strength, the balance and the cardiorespiratory endurance with 9 variables of the fitness assessment. Analysis: The construct validity of the model was assessed through the factor loadings, interpreted as the correlation between the variables in the model and their underlying factor, which is the FID construct. Results: Factor loading were 0,55 for the passive knee extension, o,52 for Functional shoulder rotation, −0.71 for the timed-stand test, 0.58 for the grip test, 0.75 the single leg stance with eyes open, 0.69 single leg stance with eyes closed, 0.72 for the resting heart rate, 0.56 for the two-minute step test (2MST) 0,97 for 2 minutes after finish 2MST. The four-factor model also showed a good fit to the data, as indicated by a high comparative fit index (CFI=0,93) and a low standardized root mean square residual (SRMR=0,072) Conclusions: A four underlying factor has shown acceptable validity to represent FID Implications: The new model of FID can offer understanding better these construct in this special populationUniversidad de Málaga. Campus de Excelencia Internacional Andalucía Tech

    Prevalence and trends of thinness, overweight and obesity among children and adolescents aged 3-18 years across Europe: a protocol for a systematic review and meta-analysis

    Get PDF
    Introduction Increasing prevalence of both thinness and excess weight during childhood and adolescence is a significant public health issue because of short-term health consequences and long-term tracking of weight status. Monitoring weight status in Europe may serve to identify countries and regions where rates of these disorders are either slowing down or increasing to evaluate recent policies aimed at appropriate body weight, and to direct future interventions. This study protocol provides a standardised and transparent methodology to improve estimating trends of thinness, overweight and obesity in children aged 3-18 years and adolescents across the European region between 2000 and 2017. Methods and analysis This protocol is guided by the Preferred Reporting Items for Systematic Review and Meta-Analysis Protocols (PRISMA-P) and the Cochrane Collaboration Handbook. To identify relevant studies, a search will be conducted in MEDLINE, EMBASE, Cochrane Library, CINAHL and Web of Science databases. From the selected studies, relevant references will be screened as supplemental sources. Finally, open search in websites from health institutions will be conducted to identify weight status data not published in scientific journals. Cross-sectional, follow-up studies and panel surveys reporting weight status (objectively measured height and weight) according to the International Obesity Task Force criteria, and written in English or Spanish will be included. Subgroup analyses will be carried out by gender, age, study year and country or European region. Discussion This study will provide a comprehensive description of weight status of children and adolescents across Europe from 2000 to 2017. The results will be disseminated in a peer-reviewed journal. This study will use data exclusively from published research or institutional literature, so institutional ethical approval is not required

    Glycosylated haemoglobin as a predictor of cardiovascular events and mortality: a protocol for a systematic review and meta-analysis

    Get PDF
    Introduction Glycosylated haemoglobin level (HbA1c) is an indicator of the average blood glucose concentrations over the preceding 2–3 months and is used as a convenient and well-known biomarker in clinical practice. Currently, epidemiological evidence suggests that HbA1c level is an independent risk factor for cardiovascular events such as myocardial infarction, stroke, coronary heart disease and heart failure. This protocol aim is to conduct a systematic review and meta-analysis to determine relationships of HbA1c levels with cardiovascular outcomes and cause of death, and to analyse the range of HbA1c levels that is a predictor of cardiovascular disease and/or mortality based on data from published observational studies. Methods and analysis The search will be conducted using Medline, EMBASE, Cochrane Central Register of Controlled Trials, Cochrane Database of Systematic Reviews, and Web of Science databases from their inception. Observational studies written in Portuguese, Spanish or English will be included. The Quality In Prognosis Studies tool will be used to assess the risk of bias for the studies included in the systematic review or meta-analysis. HRs for cardiovascular outcomes and causes of death with 95% CIs will be determined as primary outcomes. Subgroup analyses will be performed based on cardiovascular outcomes, cause of death studied, and type of population included in the studies. Ethics and dissemination This systematic review will synthesise evidence on the potential of using HbA1c level as a prognostic marker for cardiovascular disease outcomes and/or mortality. The results will be disseminated by publication in a peer-reviewed journal. Ethics approval will not be needed because the data used for this systematic review will be obtained from published studies and there will be no concerns about privacy

    Effects of an exercise program on brain health outcomes for children with overweight or obesity

    Get PDF
    Importance Pediatric overweight and obesity are highly prevalent across the world, with implications for poorer cognitive and brain health. Exercise might potentially attenuate these adverse consequences. Objectives To investigate the effects of an exercise program on brain health indicators, including intelligence, executive function, academic performance, and brain outcomes, among children with overweight or obesity and to explore potential mediators and moderators of the main effects of exercise. Design, Setting, and Participants All preexercise and postexercise data for this 20-week randomized clinical trial of 109 children aged 8 to 11 years with overweight or obesity were collected from November 21, 2014, to June 30, 2016, with neuroimaging data processing and analyses conducted between June 1, 2017, and December 20, 2021. All 109 children were included in the intention-to-treat analyses; 90 children (82.6%) completed the postexercise evaluation and attended 70% or more of the recommended exercise sessions and were included in per-protocol analyses. Interventions All participants received lifestyle recommendations. The control group continued their usual routines, whereas the exercise group attended a minimum of 3 supervised 90-minute sessions per week in an out-of-school setting. Main Outcomes and Measures Intelligence, executive function (cognitive flexibility, inhibition, and working memory), and academic performance were assessed with standardized tests, and hippocampal volume was measured with magnetic resonance imaging. Results The 109 participants included 45 girls (41.3%); participants had a mean (SD) body mass index of 26.8 (3.6) and a mean (SD) age of 10.0 (1.1) years at baseline. In per-protocol analyses, the exercise intervention improved crystallized intelligence, with the exercise group improving from before exercise to after exercise (mean z score, 0.62 [95% CI, 0.44-0.80]) compared with the control group (mean z score, –0.10 [95% CI, –0.28 to 0.09]; difference between groups, 0.72 SDs [95% CI, 0.46-0.97]; P < .001). Total intelligence also improved significantly more in the exercise group (mean z score, 0.69 [95% CI, 0.48-0.89]) than in the control group (mean z score, 0.07 [95% CI, –0.14 to 0.28]; difference between groups, 0.62 SDs [95% CI, 0.31-0.91]; P < .001). Exercise also positively affected a composite score of cognitive flexibility (mean z score: exercise group, 0.25 [95% CI, 0.05-0.44]; control group, –0.17 [95% CI, –0.39 to 0.04]; difference between groups, 0.42 SDs [95% CI, 0.13-0.71]; P = .005). These main effects were consistent in intention-to-treat analyses and after multiple-testing correction. There was a positive, small-magnitude effect of exercise on total academic performance (mean z score: exercise group, 0.31 [95% CI, 0.18-0.44]; control group, 0.10 [95% CI, –0.04 to 0.24]; difference between groups, 0.21 SDs [95% CI, 0.01-0.40]; P = .03), which was partially mediated by cognitive flexibility. Inhibition, working memory, hippocampal volume, and other brain magnetic resonance imaging outcomes studied were not affected by the exercise program. The intervention increased cardiorespiratory fitness performance as indicated by longer treadmill time to exhaustion (mean z score: exercise group, 0.54 [95% CI, 0.27-0.82]; control group, 0.13 [95% CI, –0.16 to 0.41]; difference between groups, 0.42 SDs [95% CI, 0.01-0.82]; P = .04), and these changes in fitness mediated some of the effects (small percentage of mediation [approximately 10%-20%]). The effects of exercise were overall consistent across the moderators tested, except for larger improvements in intelligence among boys compared with girls. Conclusions and Relevance In this randomized clinical trial, exercise positively affected intelligence and cognitive flexibility during development among children with overweight or obesity. However, the structural and functional brain changes responsible for these improvements were not identified

    Influence of the quality implementation of a physical education curriculum on the physical development and physical fitness of children

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>This study was constructed as a comparison group pre-test/post-test quasi-experiment to assess the effect of the implementation of the PE curriculum by specialist PE teachers on children's physical development and physical fitness.</p> <p>Methods</p> <p>146 classes from 66 Slovenian primary schools were assigned to quasi-test (71) and quasi-control (75) groups. Data from the SLOFIT database was used to compare the differences in physical fitness and development between groups of children whose PE lessons were delivered by specialist PE teachers from the second grade onwards (quasi-test, n = 950) or by generalist teachers in all first three grades (quasi-control, n = 994). The Linear Mixed Model was used to test the influence of specialist PE teachers' teaching.</p> <p>Results</p> <p>The quasi-control group showed significantly lower improvement of physical fitness by -0.07 z-score units (95% CI -0.12 to 0.02) compared to the quasi-test group. A significant difference of -0.20 (-0.27 to -0.13) was observed in explosive strength, and of -0.15 (-0.23 to -0.08) in running speed, and in flexibility by -0.22 (-0.29 to -0.14). No significant differences in physical development were observed.</p> <p>Conclusions</p> <p>Specialist PE teachers were more successful than generalist teachers in achieving greater improvement of children's physical fitness, but no differences were observed in physical development of quasi-test and quasi-control group.</p

    Effectiveness of an mHealth intervention combining a smartphone app and smart band on body composition in an overweight and obese population: Randomized controlled trial (EVIDENT 3 study)

    Get PDF
    Background: Mobile health (mHealth) is currently among the supporting elements that may contribute to an improvement in health markers by helping people adopt healthier lifestyles. mHealth interventions have been widely reported to achieve greater weight loss than other approaches, but their effect on body composition remains unclear. Objective: This study aimed to assess the short-term (3 months) effectiveness of a mobile app and a smart band for losing weight and changing body composition in sedentary Spanish adults who are overweight or obese. Methods: A randomized controlled, multicenter clinical trial was conducted involving the participation of 440 subjects from primary care centers, with 231 subjects in the intervention group (IG; counselling with smartphone app and smart band) and 209 in the control group (CG; counselling only). Both groups were counselled about healthy diet and physical activity. For the 3-month intervention period, the IG was trained to use a smartphone app that involved self-monitoring and tailored feedback, as well as a smart band that recorded daily physical activity (Mi Band 2, Xiaomi). Body composition was measured using the InBody 230 bioimpedance device (InBody Co., Ltd), and physical activity was measured using the International Physical Activity Questionnaire. Results: The mHealth intervention produced a greater loss of body weight (–1.97 kg, 95% CI –2.39 to –1.54) relative to standard counselling at 3 months (–1.13 kg, 95% CI –1.56 to –0.69). Comparing groups, the IG achieved a weight loss of 0.84 kg more than the CG at 3 months. The IG showed a decrease in body fat mass (BFM; –1.84 kg, 95% CI –2.48 to –1.20), percentage of body fat (PBF; –1.22%, 95% CI –1.82% to 0.62%), and BMI (–0.77 kg/m2, 95% CI –0.96 to 0.57). No significant changes were observed in any of these parameters in men; among women, there was a significant decrease in BMI in the IG compared with the CG. When subjects were grouped according to baseline BMI, the overweight group experienced a change in BFM of –1.18 kg (95% CI –2.30 to –0.06) and BMI of –0.47 kg/m2 (95% CI –0.80 to –0.13), whereas the obese group only experienced a change in BMI of –0.53 kg/m2 (95% CI –0.86 to –0.19). When the data were analyzed according to physical activity, the moderate-vigorous physical activity group showed significant changes in BFM of –1.03 kg (95% CI –1.74 to –0.33), PBF of –0.76% (95% CI –1.32% to –0.20%), and BMI of –0.5 kg/m2 (95% CI –0.83 to –0.19). Conclusions: The results from this multicenter, randomized controlled clinical trial study show that compared with standard counselling alone, adding a self-reported app and a smart band obtained beneficial results in terms of weight loss and a reduction in BFM and PBF in female subjects with a BMI less than 30 kg/m2 and a moderate-vigorous physical activity level. Nevertheless, further studies are needed to ensure that this profile benefits more than others from this intervention and to investigate modifications of this intervention to achieve a global effect
    corecore